Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability

Cheng-Lin Lu, Jing Ren, Jia-Wen Mo, Jun Fan, Fang Guo, Liang-Yu Chen, You-Lu Wen, Shu-Ji Li, Ying-Ying Fang, Zhao-Fa Wu, Yu-Long Li, Tian-Ming Gao, Xiong Cao

PII: S0006-3223(21)01833-3

DOI: https://doi.org/10.1016/j.biopsych.2021.11.022

Reference: BPS 14730

To appear in: Biological Psychiatry

Received Date: 9 July 2021

Revised Date: 4 November 2021

Accepted Date: 28 November 2021

Please cite this article as: Lu C.-L., Ren J., Mo J.-W., Fan J., Guo F., Chen L.-Y., Wen Y.-L., Li S.-J., Fang Y.-Y., Wu Z.-F., Li Y.-L., Gao T.-M. & Cao X., Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability, *Biological Psychiatry* (2022), doi: https://doi.org/10.1016/j.biopsych.2021.11.022.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc on behalf of Society of Biological Psychiatry.

1	Glucocorticoid receptor-dependent astrocytes mediate stress
2	vulnerability
3	Short Title: Astrocytes regulate depressive-like behaviors via GRs
4	Cheng-Lin Lu ^{1#} , Jing Ren ^{1#} , Jia-Wen Mo ¹ , Jun Fan ¹ , Fang Guo ¹ , Liang-Yu Chen ¹ , You-Lu
5	Wen ³ , Shu-Ji Li ¹ , Ying-Ying Fang ¹ , Zhao-Fa Wu ⁴ , Yu-Long Li ⁴ , Tian-Ming Gao ¹ , Xiong
6	Cao ^{1, 2*}
7	
8	1. Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong
9	Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence,
10	Guangdong Province Key Laboratory of Psychiatric Disorders, Department of
11	Neurobiology, School of Basic Medical Sciences, Southern Medical University,
12	Guangzhou 510515, P. R. China.
13	2. Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital,
14	Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
15	3. Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Guangzhou
16	510510, China
17	4. State Key Laboratory of Membrane Biology, Peking University School of Life Sciences,
18	Beijing 100871, China
19	# Cheng-Lin Lu and Jing Ren contributed equally to this work.
20	*Address correspondence to Xiong Cao, Ph.D., at caoxiong@smu.edu.cn

21 ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a devastating psychiatric illness that affects approximately 17% of the population worldwide. Astrocyte dysfunction has been implicated in the pathophysiology of MDD. Traumatic experiences and stress contribute to the onset of MDD, but how astrocytes respond to stress is poorly understood.

METHODS: Using western blot analysis, we identified stress vulnerability was associated with reduced astrocytic glucocorticoid receptor (GR) expression in mouse models of depression. We further investigated the functions of astrocytic GRs in regulating depression and the underlying mechanisms by using a combination of behavioral studies, fiber photometry, biochemical experiments, and RNA-sequencing methods.

RESULTS: GRs in astrocytes were more sensitive to stress than those in neurons. The GR absence in astrocytes induced depressive-like behaviors, whereas restoring astrocytic GR expression in the medial prefrontal cortex (mPFC) prevented the depressive-like phenotype. Furthermore, we found that GRs in the mPFC affected astrocytic Ca²⁺ activity and dynamic adenosine 5'-triphosphate (ATP) release in response to stress. RNA-sequencing of astrocytes isolated from GR deletion mice identified the PI3K-AKT

38 signaling pathway, which was required for astrocytic GR-mediated ATP release.

39 CONCLUSIONS: These findings reveal that astrocytic GRs play an important role in the 40 stress response and that the reduced astrocytic GR expression in the stressed subject 41 decreases ATP release to mediate stress vulnerability.

42 **Keywords:** Depression; Astrocyte; GR; ATP; Stress vulnerability; PI3K

43 BACKGROUND

44	Major depressive disorder (MDD) is the most prevalent psychiatric disease, with
45	approximately 17% of the world's population affected by MDD in their lifetime (1). The
46	morbidity, mortality, and socioeconomic burden associated with MDD make it a
47	devastating psychiatric illness. Astrocytes, the majority cell type among glial cells, execute
48	a variety of essential functions, including their contribution to the blood-brain barrier,
49	synaptogenesis, ion homeostasis, neurotransmitter buffering, and the secretion of
50	neuroactive agents (2, 3). Accumulated evidence indicates that dysfunction of astrocytes
51	is involved in the pathophysiology of MDD (4, 5). Evidence from human subjects and
52	animal models of depression has shown that morphological and numerical changes in glia
53	in the prefrontal area (6, 7) and pharmacologic glial ablation in the mPFC induce
54	depressive-like behaviors (8). Astrocytes are known to release ATP in the mPFC, which
55	are vital in the induction of depressive symptoms and antidepressant responses (9, 10).
56	However, how astrocytes respond to stress and contribute to the pathogenesis of
57	depression remains unclear.
58	Traumatic experiences and social stress, contributing to the onset of MDD, trigger
59	stress responses including activation of the hypothalamic-pituitary-adrenal (HPA) axis and
60	the release of glucocorticoid hormones (11-13). Glucocorticoid hormones activate GRs,
61	which are expressed ubiquitously in the brain, during the stress response (11, 12, 14).
62	GRs in neurons have been shown to modulate depressive-like behaviors in animal studies
63	(15-19). However, the GR expression is markedly higher in astrocytes than in neurons in
64	the brain (20). Astrocytes are the key components of the brain-blood barrier (21), and

65 glucocorticoids already in the blood activate astrocytic GRs earlier than neuronal GRs in 66 the brain. However, whether astrocytic GRs respond to stress and modulate 67 depressive-like behaviors remains largely unexplored. 68 Here, we showed that stress vulnerability was associated with reduced astrocytic GR 69 expression. Astrocyte-specific knockout of Nr3c1 (encoding GRs) was sufficient to induce 70 depressive-like behaviors, which was rescued by restoring GRs in astrocytes in the mPFC. 71 We then showed that astrocytic GRs in the mPFC modulated depressive-like phenotypes. Moreover, the GR absence in astrocytes decreased the Ca²⁺ activity and ATP release in 72 73 the mPFC. RNA sequencing indicated that the GR regulated ATP release from astrocytes 74 via the PI3K-AKT signaling pathway. Our study suggests that astrocytic GRs buffer the 75 consequences of stress and that the activation of astrocytic GRs in the stressed subject 76 seems to release a putative messenger to alert the body to stress.

77

78 METHODS AND MATERIALS

79 Animals

The *Nr3c1^{loxP/loxP}* mice were purchased from the Jackson Laboratory (cat# 021021). The *Fgfr3-iCreER^{T2}* mice (C57BL/6J background) were generously provided by William D. Richardson (University College London, London, UK). All animal experiments were approved by the Southern Medical University Animal Ethics Committee. Detailed methods and materials regarding additional animals, reagents, virus injections,

85 behavioral tests, and biochemical experiments are provided in the Supplement

86 Information.

87 **RESULTS**

88 The GR in astrocytes is more sensitive to stress than that in neurons

89 To confirm that the aberrant expression of GRs is universal in depression (22, 23), we first 90 used chronic social defeat stress (CSDS), a well-established model of depression that 91 mimics several psychopathological dimensions of depression (24). In the 10-days CSDS 92 protocol, eight-week-old male C57BL/6J mice were exposed to a physically aggressive 93 CD-1 mouse (10 min d⁻¹) for social defeat (Figure 1A). CSDS induced a social avoidance 94 behavior in a subset of mice as assessed with the social interaction (SI), termed 95 stress-susceptible (Sus). Defeated mice that did not display social avoidance were considered resilient (Res; Figure 1B). Then, we detected the GR protein level in the 96 97 mPFC, a candidate site for impaired function in depression (9, 10). Western blot analysis 98 showed that the GR protein was significantly reduced in the mPFC of Sus mice compared 99 to control mice (Figure 1C). Additionally, the GR protein level was positively correlated 100 with the social interaction (SI) ratio in the social interaction test (Figure 1D). Meanwhile, 101 the adult mice were subjected to 3-days subthreshold social defeat stress (SSDS), which 102 did not induce social avoidance behaviors and a reduction of total GR expression in the 103 mPFC (Figure S2A, B). We next evaluated whether significant changes in GR expression 104 were present in which depression was induced by treatment with lipopolysaccharide (LPS) 105 (25). Ten days of LPS injection (0.5 mg kg⁻¹ per day, intraperitoneal (i.p.)) in 106 eight-week-old C57BL/6J mice was sufficient to cause depressive-like behaviors in the 107 forced swim test (FST; Figure 1 E, F) and sucrose preference test (25). Mice with 108 LPS-induced depression also showed a significant decrease in the GR protein level in the

mPFC (Figure 1G), and the GR protein level was negatively correlated with immobility
 time in the FST (Figure 1H).

111 Neurons and astrocytes are two major cell types in the adult brain. To determine which 112 subtype of cells is more sensitive to stress, we first detected GR expression in neurons 113 and astrocytes. We found that GRs were present in most astrocytes and neurons (Figure 114 S1A-E). Western blot analysis showed that the GR protein level was higher in cultured 115astrocytes than in neurons (Figure S1F), consistent with previous reports (20). We then 116 detected the GR protein level in cultured astrocytes and neurons during the stress 117response. A reduction of GR protein level was observed in cultured astrocytes treated with 118 LPS (1 µg ml⁻¹) at 8 d in vitro (DIV8), and neurons (DIV14) showed no difference in the GR 119 protein level upon LPS (1 µg ml⁻¹) treatment (Figure 1I). Stress activates the HPA axis and 120 enhances the release of glucocorticoid hormones, which activate GRs in the brain (13). 121 Then, we directly treated cultured astrocytes (DIV8) and neurons (DIV14) with GR agonist 122 dexamethasone (DXMS) to mimic the stress condition. The results showed that the GR 123 protein level was downregulated in astrocytes exposed to 1 μ M and 5 μ M DXMS for 6 h, 124 but no difference was observed in neurons (Figure 1J). We also found that the GR protein 125 level was downregulated in astrocytes exposed to DXMS (1 µM) for 24 h and 48 h. 126 Meanwhile, the treatment of neurons with DXMS (1 µM) for 48 h induced the 127downregulation of the GR protein (Figure 1K). To determine the levels of astrocytic GRs of 128 mice under stress, adult mice were subjected to SSDS or CSDS. After SSDS or CSDS, 129 the mPFC slices of mice were stained to visualize GRs with S100ß (a marker of 130 astrocytes) and NeuN (a marker of neurons). Immunostaining and quantification revealed

131	that the GR protein level was markedly decreased in astrocytes in the mPFC after SSDS
132	(Figure 1L), but no difference was observed in neurons (Figure 1M). After CSDS, GRs
133	were decreased in both astrocytes and neurons in the mPFC of Sus mice (Figure S2C, D).
134	Then, we isolated astrocytes from the mPFC by fluorescence-activated cell sorting (FACS)
135	after the CSDS paradigm. Simple western blot analysis also showed that astrocytic GRs
136	were decreased in the mPFC of Sus mice compared with control mice (Figure S2E).
137	Taken together, these results suggest that astrocytes contribute to the stress-induced
138	reduction of GRs, and GRs in astrocytes are more sensitive to stress than those in
139	neurons in the mPFC.
140	Astrocyte-specific knockout of Nr3c1 induces depressive- and anxiety-like
141	behaviors
142	To evaluate the role of astrocytic GRs in depression, we generated an astrocyte-specific
143	GR deletion mouse line, <i>Fgfr3-iCreER</i> ^{T2} ; <i>Nr3c1^{loxP/loxP}</i> , for behavioral studies (Figure 2A).
144	To obtain this model, we crossed mice with the floxed Nr3c1 allele with the Fgfr3-iCreER ^{T_2}
145	mouse line, allowing selective Nr3c1 deletion in astrocytes via tamoxifen-inducible Cre
146	recombination (Figure 2A and Figure S3A). To examine the efficiency and specificity of
147	GR deletion in astrocytes, brain tissues were collected from adult mice and studied 28
148	days after the first tamoxifen injection. <i>Fgfr3-iCreER</i> ^{T2} ; <i>Nr3c1</i> ^{loxP/loxP} (cKO) and littermate
149	control (Ctrl) mice exhibited normal growth rates, body weights and brain sizes (Figure S3
150	B-D). No apparent differences in brain structure, astrocytes, and neurons density were
151	observed between the cKO and Ctrl mice (Figure S3 E-G). Immunostaining revealed that
152	GRs were attenuated in GFAP-positive astrocytes (Figure S3H) and not changed in

153	NeuN-positive neurons (Figure S3I) in the mPFC of cKO mice compared to Ctrl mice. In
154	addition, flow cytometry analysis showed a more than 50% reduction of astrocytic GR
155	expression in cKO mice compared to Ctrl mice (Figure 2 B, C, and Figure S4A).
156	For behavioral studies, all mice were treated with tamoxifen for 5 continuous days.
157	Allowed 28 days recovery to induced downregulation of GRs, mice were then subjected to
158	a battery of depression-related behavioral tests. In the FST, the duration of immobility was
159	increased in cKO mice compared with Ctrl mice (Figure 2D). To assess whether a loss of
160	GRs increases stress vulnerability, we then subjected mice to the SSDS experiment (26),
161	in which no difference in interaction zone time when the social target was present was
162	observed between defeated and undefeated Ctrl mice (Figure 2E). However, defeated
163	cKO mice displayed greater social avoidance than undefeated cKO mice (Figure 2E). No
164	difference was observed in sucrose preference (Figure S5A) and tail suspension test (TST;
165	Figure S5B). Next, mice were subjected to anxiety-related behavioral tests. The results
166	showed that cKO mice spent less time in the open arm in the elevated-plus maze (EPM;
167	Figure 2F) and stayed longer in the dark box in the light-dark box (LD box; Figure 2G)
168	compared to Ctrl mice. cKO mice also displayed reduced general locomotion in the open
169	field test (OFT; Figure 2 H, I), but no difference in motor coordination was observed in the
170	rotarod test (Figure 2J). These observations indicate that the GR absence in astrocytes
171	induces depressive- and anxiety-like behaviors in adult mice.

172

173 Astrocytic GR dysfunction in the mPFC displays depressive-like phenotypes

174 To determine whether the selective knockout of astrocytic GRs in the mPFC would induce

175	depressive-like behaviors, we bilaterally injected AAV-GFAP-Cre or AAV-GFAP-EYFP
176	viruses into the mPFC of <i>Nr3c1^{loxP/loxP}</i> mice for behavioral studies (Figure 3A). Confocal
177	imaging showed that the GFAP-Cre virus was specifically expressed on astrocytes in the
178	mPFC (Figure 3B and Figure S6A), and western blot analysis showed that the GR protein
179	level was decreased in the knockout mice (Figure 3C). We next assayed depressive-like
180	phenotypes and found that mice infected with the AAV-GFAP-Cre virus displayed
181	depressive-like behaviors, including increased immobility time in the FST (Figure 3D) and
182	social avoidance after the SSDS (Figure 3E and Figure S6B). However, the
183	AAV-GFAP-Cre virus had no effect on anxiety-related behaviors or general locomotion
184	(Figure 3F-H).
185	To determine whether the restoration of astrocytic GRs in the mPFC would be sufficient
186	to reverse the depressive-like behaviors caused by astrocytic GR knockout, we bilaterally
187	injected AAV-DIO-Nr3c1 or control viruses into the mPFC of cKO and Ctrl mice. Confocal
188	imaging showed that the virus was expressed on mPFC astrocytes (Figure 3I) and
189	western blot analysis showed that the GR was overexpressed in the mPFC in the mice
190	infected with the AAV-DIO-Nr3c1 virus (Figure S6C). Then, all mice were subjected to the
191	SI test to assess the social avoidance behavior before and after the SSDS. After the
192	SSDS paradigm, cKO mice infected with the control virus also displayed social avoidance
193	behaviors in the SI test (Figure 3J and Figure S6D). Interestingly, the social avoidance
194	behavior in cKO mice was reversed by the restoration of GRs in astrocytes in the mPFC
195	(Figure 3J and Figure S6D). In parallel experiments, the GR overexpression had no
196	detectable effect on the social avoidance behavior of control mice before and after the

197	SSDS (Figure 3J and Figure S6D). Additionally, no difference in locomotion activity in the
198	OFT was observed (Figure 3 K, L). Taken together, these results indicate that the
199	impairment of astrocytic GRs in the mPFC is sufficient to induce depressive-like
200	behaviors.
201	
202	The GR deletion causes dysfunction of astrocytic Ca ²⁺ activity in the mPFC
203	Astrocyte Ca ²⁺ signaling is important for intercellular communication to regulate
204	physiological function (27-29). Therefore, we assessed astrocytic function in the mPFC of
205	cKO and Ctrl mice. We injected the AAV-GFAP-GCaMP6s virus, which preferentially
206	targets astrocytes due to the GFAP promoter, into the mPFC, and optical fibers were
207	implanted above the infected cells to carry out fiber photometry recordings (Figure 4A, B).
208	Confocal images and quantification showed that more than 90% of Gcamp6s were
209	expressed in GFAP-positive astrocytes (Figure S7A-C). Fluorescence signals from
210	astrocytes in the mPFC were measured two weeks after injection while mice in a
211	protective wire-mesh enclosure were attacked by an aggressor mouse in the forced
212	interaction test (FIT; Figure 4A, B) (30, 31). Before the SSDS paradigm, the astrocytic
213	Ca ²⁺ signals of cKO mice were increased during attack periods compared to non-attack
214	periods and similar to those of control mice (Figure 4 C-E). After 3 days of SSDS, control
215	mice also showed a large increase in Ca ²⁺ signaling during an attack. Notably, the
216	magnitude of this increase was attenuated in cKO mice (Figure 4 C-E). These results
217	suggest that Ca ²⁺ activity is reduced in response to stress after the deletion of astrocytic
218	GRs and that GRs in astrocytes may affect the Ca ²⁺ -evoked release of neurotransmitters.

GRs modulate astrocytic ATP release in the mPFC

220	To explore how astrocytic GRs in the mPFC modulate depressive-like behaviors, we first
221	detected plasma corticosterone levels. No difference in plasma corticosterone was
222	observed between cKO and Ctrl mice under basal conditions or after an additional acute
223	social defeat episode (Figure 5A). We next analyzed the amounts of neurotransmitters
224	and inflammatory cytokines, known to be secreted by astrocytes (10, 32, 33), in the PFC
225	of cKO and Ctrl mice (Figure 5B and Figure S8A). Notably, the concentration of ATP was
226	lower in the artificial cerebral spinal fluid (ACSF) from PFC slices derived from cKO mice
227	(Figure 5B). Furthermore, in vivo microdialysis in freely moving mice demonstrated that
228	ATP concentrations in the interstitial fluid of the mPFC were significantly decreased in
229	cKO mice compared to Ctrl mice (Figure 5C), indicating that GRs seem to regulate
230	astrocytic ATP release.
231	To determine whether GRs regulate ATP release from astrocytes, we first employed
232	pharmacological approaches. The application of DXMS increased ATP accumulation in
233	the medium collected from cultured astrocytes 4 h after the treatment (Figure 5D). The
234	ability of GRs to enhance ATP release from astrocytes was further confirmed using
235	virus-mediated conditional knockout of GRs in cultured astrocytes isolated from
236	<i>Nr3c1^{loxP/loxP}</i> mice. The results showed that cultured astrocytes infected with
237	pLenti-EGFP-Cre induced downregulation of the GR protein (Figure S8B-C). DXMS
238	treatment also increased ATP release from astrocytes infected with the control virus, and
239	the effect of DXMS in enhancing ATP levels was blocked by the knockout of GRs (Figure
240	5E).

241	Furthermore, to detect extracellular ATP dynamics in the mPFC in vivo at a high
242	temporal resolution and with high specificity and sensitivity, we virally expressed an ATP
243	sensor (AAV-GfaABC1D-ATP1.0) in astrocytes of the mPFC of cKO and Ctrl mice, and
244	the amount of extracellular ATP was indicated by the intensity of fluorescence produced
245	by green fluorescent protein (GFP). Two weeks after injection of the virus, fluorescence
246	signals from astrocytes while mice were attacked by an aggressor mouse during the FIT
247	were recorded using fiber photometry (Figure 5F, G). Before SSDS, fluorescence signals
248	in both cKO and Ctrl mice increased when the mice were attacked by a CD1 aggressor
249	(Figure 5 H-I). No significant difference in peak fluorescence signal was observed
250	between the two groups (Figure 5J). After 3 days of SSDS, control mice also displayed a
251	large increase in fluorescence during attack periods (Figure 5 H-I). However, this effect
252	was reduced in cKO mice (Figure 5J).
253	Next, to define the role of ATP in the depressive-like behaviors caused by astrocytic
254	GR deletion, we directly administered ATP to cKO mice (Figure 5K). Following the i.p.
255	injection of ATP (125 mg per kg body weight) into the cKO mice, we observed that ATP
256	treatment reduced the immobility time of the cKO mice in the FST (Figure 5L). No
257	difference in locomotion activity in the OFT was observed (Figure S8D, E). Taken together,
258	these results demonstrate that ATP release is impaired after the deletion of astrocytic GRs
259	and that impairment of ATP release contributes to the depressive-like behaviors induced
260	by astrocyte-specific loss of GRs.
261	

262 GRs regulate ATP release from astrocytes mediated by the PI3K-AKT signaling

263

pathway

264	The GR is a constitutively expressed transcriptional regulatory factor (TRF) that controls
265	many distinct gene networks (34). To explore how GRs modulate astrocytic ATP release,
266	we examined the mRNA expression profiles of astrocytes isolated from the mPFC of cKO
267	and Ctrl mice with FACS by RNA sequencing (RNA-seq) analysis. A volcano plot showed
268	that 389 genes were upregulated, while 89 genes were downregulated in cKO mice
269	(Figure 6A). The overall expression profiles of the Ctrl and cKO groups obtained after
270	hierarchical cluster analysis showed clear separation of the differentially expressed genes
271	(DEGs; Figure 6B). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
272	analysis indicated that the PI3K-AKT signaling pathway was significantly enriched within
273	the dataset (Figure 6C).
274	To directly test whether the PI3K-AKT signaling pathway is involved in GR-dependent
275	ATP release from astrocytes, we employed pharmacological approaches. Western blot
276	analysis showed that DXMS significantly increased the phosphorylation of PI3K and AKT
277	in cultured astrocytes (Figure 6D). LY29004, a selective PI3K inhibitor, attenuated
278	astrocytic ATP release caused by DXMS (Figure 6E). These results indicate that
279	GR-dependent ATP release from astrocytes was mediated by the PI3K-AKT signaling
280	pathway. PI3K has been reported to regulate intracellular vesicular traffic and
281	homeostasis of the lysosome (35). Lysosome exocytosis is shown to be responsible for
282	ATP release in astrocytes (36). Therefore, we then investigated the effects of
283	glycylphenylalanine 2-naphthylamide (GPN) that selectively induces lysosome
284	osmodialysis on the ATP release in cultured astrocytes (36). The results revealed that the

285	DXMS-induced enhancement in astrocytic ATP release was decreased by the treatment
286	with 200 μM GPN (Figure 6F). To evaluate the effect of PI3K activation on lysosomes, we
287	treated astrocytes with 740 Y-P (PI3K agonist; 50 μ g ml ⁻¹) for 4 h (37, 38), and then
288	analyzed the astrocytic lysosomal compartment with Lysotracker, a weakly basic amine
289	fluorescent probe that accumulates in acidic compartments such as lysosomes.
290	Astrocytes incubated with Lysotracker were imaged and the mean fluorescence intensity
291	of fluorescence-positive lysosomes was quantified. We found that mean fluorescence
292	intensity was decreased in astrocytes treated with 740 Y-P compared to control astrocytes
293	(Figure 6G, H). To examine whether PI3K activation in astrocytes affects lysosome
294	numbers or size, astrocytes were stained with Lamp1, a lysosomal marker, after treatment
295	with 740 Y-P for 4 h. The results showed that PI3K activation significantly increased the
296	number of lysosomes compared to control astrocytes (Figure 6I, J). No difference in
297	distributions of the lysosomal size was observed between these two groups (Figure 6K).
298	Taken together, these findings suggest that GR-dependent ATP release from astrocytes
299	through lysosome exocytosis requires activation of the PI3K-AKT signaling pathway.
300	

301 **DISCUSSION**

302 Overall, we found that chronic stress induced a reduction in GRs in astrocytes. 303 Furthermore, astrocyte-specific knockout of GRs was found to be sufficient to induce 304 depressive-like behaviors. The reduction in astrocytic GRs decreased ATP release, which 305 was mediated by the PI3K-AKT signaling pathway. We previously reported that 306 astrocyte-derived ATP modulated depressive-like behaviors and P2X2 receptors in the

307 mPFC were required for the antidepressant-like effect of ATP (10). Together, our study 308 suggests that temporal elevations in glucocorticoid levels preferentially activated 309 astrocytic GRs, thereby enhancing extracellular ATP release through lysosome 310 exocytosis. ATP released from astrocytes binds to purinergic receptors on neurons. 311 Chronic stress induced a reduction of astrocytic GRs in the mPFC, which consequently 312 caused decreased ATP released from astrocytes to regulate depressive-like behaviors 313 (Figure 6L).

314Neurochemical evidence suggests that chronic stress enhances the excitability of the 315 HPA, which drives the release of glucocorticoid hormones into the blood (16, 18, 39, 40). 316 Glucocorticoid hormones in the blood can be transported into the brain through the 317 blood-brain barrier. Previous studies have reported that hyperactivity of the HPA axis is 318 observed in the majority of patients with depression (41), and up to 40-60% of depressed 319 patients experience hypercortisolemia (17). Pathological activation of the prefrontal 320 cortical GRs by chronic stress negatively impacts the GR expression, suggesting the loss 321 of prefrontal feedback control (22, 42). Previous studies and our data indicated that the 322 GR expression in astrocytes was higher than that in neurons in the brain (20). And chronic 323 stress induced a reduction of astrocytic GRs in the mPFC. Therefore, astrocytic GRs may 324 contribute to glucocorticoid hormones feedback control. 325 The GR expression is detected in most mouse cell subsets, including astrocytes, 326 neurons, microglia, endothelial cells, and oligodendrocytes (20). Previous studies have 327 shown that GRs in neurons modulate depressive-like behaviors (15-17, 43). However, the 328 effects of GRs in other cell subtypes in depression, such as astrocytes, have been poorly

329	explored. In a previous study, astrocyte-specific elimination of GRs impaired contextual
330	fear memory but did not elicit depressive-like symptoms in TST and sucrose preference
331	(44). In our study, we found astrocyte-specific knockout of the GRs induced
332	depressive-like behaviors in FST and SSDS. Similarly, we also did not find cKO mice
333	displayed depressive-like behaviors in TST and sucrose preference (Figure S5A, B).
334	Given the multifactorial nature and heterogeneity of major depression, different animal
335	depression models can only mimic some of the characteristics of depression (45).
336	Besides, knockdown of the astrocytic GRs in the central nucleus of the amygdala
337	diminishes conditioned fear expression and anxiety (46). In our study, we found global
338	astrocyte-specific knockout of GRs induced anxiety-like behaviors. However, knockdown
339	of the astrocytic GRs in the mPFC did not induce anxiety-like behavior. Therefore,
340	astrocytic GRs in other brain regions may play a role in fear memory and anxiety. In
341	addition, our experiments indicated that chronic stress induced a reduction of the GR
342	expression in astrocytes and that astrocytes were more sensitive to the stress response
343	than neurons. In the present study, we provide direct evidence that astrocytes are likely to
344	respond to stress before neurons to protect neurons from high concentrations of
345	glucocorticoid hormones. Astrocytic GRs seem to be a necessary molecule to the onset of
346	depression. However, the role of GRs in other cell subtypes in response to stress and the
347	relationships among these cells in MDD require further determination.
348	Previous studies have shown that exposure to stress rapidly increases the release of
349	neurotransmitters from synapses, which leads to the Ca ²⁺ -dependent exocytosis of ATP
350	from astrocytes (32, 33). ATP and its metabolite, adenosine, activate disparate

351	presynaptic purinergic receptor subtypes to regulate synaptic efficacy (32, 47). However,
352	our results suggest that GRs in astrocytes activated by circulating corticosterone promote
353	ATP release, indicating that stress-induced circulating corticosterone directly modulates
354	astrocytic ATP release. Previous studies have also proven that glucocorticoid hormones
355	regulate ATP release from spinal astrocytes (48). Several possible pathways have been
356	shown to be responsible for ATP release in astrocytes including vesicular exocytosis and
357	non-exocytosis (49). Here, we show that GR-dependent ATP release from astrocytes
358	through lysosome exocytosis requires activation of the PI3K-AKT signaling pathway.
359	Though the PI3K has been reported to regulate intracellular vesicular traffic and
360	homeostasis of the lysosome (35), the relationship between lysosome exocytosis and the
361	PI3K-AKT signaling pathway under stress needs to be further determined.
362	Moreover, we found that a reduction in astrocytic GRs results in increased
363	inflammatory factors (Figure S8A). Given that neuroinflammation is tightly associated with
364	the onset of depression (25, 50, 51), it seems likely that astrocyte neuroinflammatory
365	mechanisms also play a role in depression.
366	In summary, our findings demonstrate a critical role for astrocytic GRs as the
367	regulator of depressive-like behaviors and establish the priority of astrocytes in response
368	to stress.
369	
370	ACKNOWLEDGMENTS AND DISCLOSURES

371 We thank William D. Richardson (University College London, London, UK) for providing

372 the *Fgfr3-iCreER*^{T2} mice. We also thank Xiao-Wen Li, Li-Rong Sun, and Ting Guo

373	(Southern Medical University) for their technical support. This work was supported by the
374	National Natural Science Foundation of China (31771187), the Guangzhou Science and
375	Technology Project (201904020039, 202007030013), the National Program for Support of
376	Top-notch Young Professionals, The Key Area Research and Development Program of
377	Guangdong Province (2018B030334001, 2018B030340001), and the Program for
378	Changjiang Scholars and Innovative Research Team in University (IRT_16R37).
379	The authors report no biomedical financial interests or potential conflicts of interest.
380	
381	AUTHOR CONTRIBUTIONS
382	X.C. and CL.L. designed the study and wrote the paper. X.C. J.R. and CL.L. analyzed
383	the data. J.R. and CL.L. performed most of the experiments. J.R. and CL.L. performed
384	behavioral experiments and stereotactic injection with the help of YY.F. and F.G.
385	performed the Western blotting. JW.M. and YL.W. performed the FACS. J.F. performed
386	the ATP assays. J.R. and SJ. L. were responsible for cell culture. LY.C. carried out
387	genotyping. FZ. W. and YL. L. provided the GRABATP1.0 virus. TM. G. reviewed and
388	edited the manuscript. X.C. supervised all phases of the project.
389	
390	REFERENCES

- 1. World Health Organization (2017): Depression and other common mental disorders:
- 392 global health estimates. https://app.mhpss.net/resource/depression-and-other-common-
- 393 mental-disorders-global-health-estimates.
- 394 2. Khakh BS, Sofroniew MV (2015): Diversity of astrocyte functions and phenotypes in

neural circuits. *Nature neuroscience*. 18:942-952.

396	3. Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, et al. (2021):
397	Behaviorally consequential astrocytic regulation of neural circuits. Neuron. 109:576-596.
398	4. Banasr M, Dwyer JM, Duman RS (2011): Cell atrophy and loss in depression:
399	reversal by antidepressant treatment. Current opinion in cell biology. 23:730-737.
400	5. Torres-Platas SG, Nagy C, Wakid M, Turecki G, Mechawar N (2015): Glial fibrillary
401	acidic protein is differentially expressed across cortical and subcortical regions in healthy
402	brains and downregulated in the thalamus and caudate nucleus of depressed suicides.
403	Molecular Psychiatry. 21:509-515.
404	6. Ongur D, Drevets WC, Price JL (1998): Glial reduction in the subgenual prefrontal
405	cortex in mood disorders. Proc Natl Acad Sci U S A. 95:13290-13295.
406	7. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA,
407	et al. (2000): Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex
408	distinguishes younger from older adults in major depressive disorder. Biological psychiatry.
409	48:861-873.
410	8. Banasr M, Duman RS (2008): Glial loss in the prefrontal cortex is sufficient to induce
411	depressive-like behaviors. Biological psychiatry. 64:863-870.
412	9. Xiong W, Cao X, Zeng Y, Qin X, Zhu M, Ren J, et al. (2019): Astrocytic
413	Epoxyeicosatrienoic Acid Signaling in the Medial Prefrontal Cortex Modulates
414	Depressive-like Behaviors. J Neurosci. 39:4606-4623.

10. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. (2013): Astrocyte-derived ATP

416 modulates depressive-like behaviors. *Nature medicine*. 19:773-777.

417	11. Huhman KL (2006): Social conflict models: can they inform us about human
418	psychopathology? <i>Horm Behav</i> . 50:640-646.
419	12. Kelleher I, Harley M, Lynch F, Arseneault L, Fitzpatrick C, Cannon M (2008):
420	Associations between childhood trauma, bullying and psychotic symptoms among a
421	school-based adolescent sample. Br J Psychiatry. 193:378-382.
422	13. Oakley RH, Cidlowski JA (2013): The biology of the glucocorticoid receptor: new
423	signaling mechanisms in health and disease. J Allergy Clin Immunol. 132:1033-1044.
424	14. de Kloet ER, Joels M, Holsboer F (2005): Stress and the brain: from adaptation to
425	disease. Nature reviews Neuroscience. 6:463-475.
426	15. Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, et al. (2005):
427	Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in
428	adrenal axis regulation and behavior. Proc Natl Acad Sci U S A. 102:473-478.
429	16. Jacobson L (2014): Forebrain glucocorticoid receptor gene deletion attenuates

430 behavioral changes and antidepressant responsiveness during chronic stress. *Brain Res.*

431 **1583:109-121**.

432 17. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, Jr., et al. (2017):

433 HPA axis in major depression: cortisol, clinical symptomatology and genetic variation

434 predict cognition. *Mol Psychiatry*. 22:527-536.

18. Arnett MG, Muglia LM, Laryea G, Muglia LJ (2016): Genetic Approaches to
Hypothalamic-Pituitary-Adrenal Axis Regulation. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*. 41:245-260.

438 19. Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S, et al. (2004): Glucocorticoid

- 439 receptor overexpression in forebrain: a mouse model of increased emotional lability. *Proc*
- 440 *Natl Acad Sci U S A*. 101:11851-11856.
- 441 20. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. (2014): An
- 442 RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells
- 443 of the cerebral cortex. *J Neurosci*. 34:11929-11947.
- 444 21. Abbott NJ, Ronnback L, Hansson E (2006): Astrocyte-endothelial interactions at the
- 445 blood-brain barrier. *Nature Reviews Neuroscience*. 7:41-53.
- 446 22. Mizoguchi K, Ishige A, Aburada M, Tabira T (2003): Chronic stress attenuates
- 447 glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus.
- 448 *Neuroscience*. 119:887-897.
- 449 23. Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA (2013):
- 450 Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic
- 451 stress: modulation by antidepressant treatment. *Neuropsychopharmacology : official*
- 452 publication of the American College of Neuropsychopharmacology. 38:616-627.
- 453 24. Golden SA, Covington HE, 3rd, Berton O, Russo SJ (2011): A standardized protocol
- 454 for repeated social defeat stress in mice. *Nature protocols*. 6:1183-1191.
- 455 25. Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, et al. (2018): Menin Deficiency
- 456 Leads to Depressive-like Behaviors in Mice by Modulating Astrocyte-Mediated
 457 Neuroinflammation. *Neuron*. 100:551-563 e557.
- 458 26. Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, et al. (2014):
- 459 beta-catenin mediates stress resilience through Dicer1/microRNA regulation. *Nature*.
- 460 **516:51-55**.

461	27. Bazargani N, Attwell D (2016): Astrocyte calcium signaling: the third wave. Natu	re
462	neuroscience. 19:182-189.	

- 463 28. Khakh BS, McCarthy KD (2015): Astrocyte Calcium Signaling: From Observations to
- 464 Functions and the Challenges Therein. *Cold Spring Harbor Perspectives in Biology*. 7.
- 465 29. Ding F, O'Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, et al. (2013):
- alpha1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in
- awake, behaving mice. *Cell Calcium*. 54:387-394.
- 468 30. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. (2018):
- 469 Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate
- 470 gyrus. *Nature*. 559:98-102.
- 471 31. Hultman R, Mague SD, Li Q, Katz BM, Michel N, Lin L, et al. (2016): Dysregulation of
- 472 Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced
- 473 Emotional Pathology. *Neuron*. 91:439-452.
- 474 32. Dallerac G, Zapata J, Rouach N (2018): Versatile control of synaptic circuits by
- 475 astrocytes: where, when and how? *Nature reviews Neuroscience*. 19:729-743.
- 476 33. Hamilton NB, Attwell D (2010): Do astrocytes really exocytose neurotransmitters?
- 477 *Nature reviews Neuroscience*. 11:227-238.
- 478 34. Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR (2017): Glucocorticoid receptor
- 479 control of transcription: precision and plasticity via allostery. *Nature reviews Molecular cell*
- 480 *biology*. 18:159-174.
- 481 35. Bilanges B, Posor Y, Vanhaesebroeck B (2019): PI3K isoforms in cell signalling and
- 482 vesicle trafficking. *Nature reviews Molecular cell biology*. 20:515-534.

483	36. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, et al. (2007): Regulated ATP
484	release from astrocytes through lysosome exocytosis. Nat Cell Biol. 9:945-953.
485	37. Williams EJ, Doherty P (1999): Evidence for and against a pivotal role of PI 3-kinase
486	in a neuronal cell survival pathway. Molecular and cellular neurosciences. 13:272-280.
487	38. Jia JM, Zhao J, Hu Z, Lindberg D, Li Z (2013): Age-dependent regulation of synaptic
488	connections by dopamine D2 receptors. <i>Nature neuroscience</i> . 16:1627-1636.
489	39. de Quervain D, Schwabe L, Roozendaal B (2017): Stress, glucocorticoids and
490	memory: implications for treating fear-related disorders. Nature reviews Neuroscience.
491	18:7-19.
492	40. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009): Effects of stress throughout the
493	lifespan on the brain, behaviour and cognition. Nature reviews Neuroscience. 10:434-445.
494	41. Holsboer F, Ising M (2010): Stress hormone regulation: biological role and translation
495	into therapy. Annu Rev Psychol. 61:81-109, C101-111.
496	42. McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB, et al.
497	(2013): Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biological
498	psychiatry. 74:672-679.
499	43. Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, et al. (2013): Chronic
500	stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.
501	Science. 339:332-335.
502	44. Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, et al. (2018):
503	Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation.

504 *Translational psychiatry*. 8:255.

505	45. Gururajan A, Reif A, Cryan JF, Slattery DA (2019): The future of rodent models in
506	depression research. Nature reviews Neuroscience. 20:686-701.
507	46. Wiktorowska L, Bilecki W, Tertil M, Kudla L, Szumiec L, Mackowiak M, et al. (2021):
508	Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the
509	amygdala diminishes conditioned fear expression and anxiety. Behavioural brain research.
510	402:113095.
511	47. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, et al. (2005):
512	Astrocytic purinergic signaling coordinates synaptic networks. Science. 310:113-116.
513	48. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. (2016):
514	Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal
515	exacerbation of neuropathic mechanical allodynia. Nature communications. 7:13102.
516	49. Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, et al. (2013): Astrocytic adenosine
517	5'-triphosphate release regulates the proliferation of neural stem cells in the adult
518	hippocampus. Stem Cells. 31:1633-1643.
519	50. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, et al. (2016): Psychological Stress
520	Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of
521	the Purinergic Type 2X7 Receptor. <i>Biological psychiatry</i> . 80:12-22.
522	51. Miller AH, Raison CL (2016): The role of inflammation in depression: from
523	evolutionary imperative to modern treatment target. Nat Rev Immunol. 16:22-34.
524	
525	Figure legends

526 Figure 1. The GR in astrocytes is more sensitive to stress than that in neurons. (A-B)

527	Schematic of CSDS paradigm (A), and social interaction ratio of susceptible (Sus),
528	resilient (Res), and control (Ctrl) mice (B). (C-D) The GR protein in the mPFC of mice after
529	the CSDS (C) and correlated with social avoidance (D; n = 7-8 mice per group). (E-F)
530	Schematic representation of LPS-induced mouse model (E), and total immobility time of
531	mice treated with LPS in the FST (F; n = 8 mice per group). (G-H) The GR protein level in
532	the mPFC of adult C57BL/6J mice treated with LPS or saline (G) and correlated with
533	immobility time in the FST (H, n = 6 mice per group). (I), Western blot analysis of the GR
534	protein in primary cultured astrocytes (DIV8) and neurons (DIV14) treated with LPS (1µg
535	ml ⁻¹) or saline for 4 h (n = 5-6 per group). (J-K) Western blot analysis of the GR protein
536	level in primary cultured astrocytes (DIV8) and neurons (DIV14) exposed to
537	dexamethasone (DXMS; 0, 0.5, 1 and 5 μ M) for 6 h (J; n = 4 per group) or DXMS (1 μ M)
538	for 0, 4, 24 and 48 h (K; n = 4 per group). (L), Representative images and quantification of
539	the co-expression of GR (red) and S100 β (green) in the mPFC of adult C57BL/6J mice (n
540	= 6 mice); Scale bars, 50 μ m. (M) Representative images quantification of the
541	co-expression of GR (red) and NeuN (green) in the mPFC of adult C57BL/6J mice (n = 6
542	mice); Scale bars, 50 μ m. Data are the mean ± s.e.m. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001.
543	Two-tailed unpaired <i>t</i> -test (F, G, I, L, M), one-way ANOVA followed by Bonferroni's
544	multiple comparison test (B, C, J, K), and correlations were evaluated with Pearson's
545	correlation coefficient (D , H).

546 **Figure 2. Astrocyte-specific loss of GRs displays depressive- and anxiety-like** 547 **behaviors. (A)** Genetic crosses used to delete astrocytic GRs from the whole brain and 548 experimental design of behavioral studies. PND, postnatal day. **(B)** Flow cytometry

549analysis of the GR expression in astrocytes from cKO and Ctrl mice 28 days after 550tamoxifen induction. The gray line depicts unstained control, black and red line GR 551 staining, and numbers indicate the percentage of GR-positive astrocytes. (C) 552 Quantification of GR-positive astrocytes of cKO and Ctrl mice (n = 3 mice per group). (D) 553Total immobility time in the FST (n = 11,14 mice). (E) Representative heatmaps and quantification of time spent in the interaction zone before and after SSDS (n = 9, 13 mice). 554 555(F) Time spent in the open arms and closed arms in the EPM (n =11, 15 mice). (G) Time 556spent in the dark box in the LD box (n = 12,15 mice). (H-I) Total distance (H) and center 557 time (I) for cKO and Ctrl mice in the open field test (n = 13, 15 mice). (J) Latency to fall of 558cKO and Ctrl mice in the rotarod test (n = 11,13 mice). Data are the mean \pm s.e.m. *P < 0.05, **P< 0.01, ***P<0.001. Two-tailed unpaired t-test (C, D, F, G, H, I) and matching 559 560two-way ANOVA followed by Bonferroni's multiple comparison test (E, J).

561 Figure 3. Astrocytic GRs in the mPFC modulate depressive-like behaviors. (A) Experimental design of behavioral studies of Nr3c1^{loxP/loxP} mice infected with 562563AAV-GFAP-CRE virus. (B) Representative images of AAV-GFAP-CRE expression in the mPFC of Nr3c1^{loxP/loxP} mice. Scale bars, 500 µm (left), 50 µm (right). (C) Western blot 564565 analysis of GRs in the mPFC in different groups (n = 5 mice per group). (D) Total 566immobility time in the FST (n = 11, 12 mice). E, Social avoidance behaviors before and 567after SSDS (n = 9 mice per group). (F) Time spent in the open and closed arms for the 568control and Cre in the EPM test (n = 11, 12 mice). (G-H) Total distance (G) and center 569 time (H) for Cre and control mice in the open field test (n = 11, 12 mice). (I) Representative 570 images of AAV-Ef α 1-DIO-Nr3c1-3xFlag expression in the mPFC of cKO mice. Scale bars,

571	500 μm (left), 50 μm (right). (J) The social avoidance behaviors of cKO and Ctrl mice
572	before and after SSDS (n = 10 mice for Ctrl+EYFP and Ctrl+GR; n = 11 mice for
573	cKO+EYFP; n = 12 mice for cKO+GR). (K-L) Total distance (K) and center time (L) for Ctrl
574	and cKO mice infected with AAV-Efa1-DIO-Nr3c1-3xFlag or control virus (n = 8 mice per
575	group). Data are the mean \pm s.e.m. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, N.S. not significant. Two-tailed
576	unpaired t-test (C, D, F, G, H), one-way (K, L), and matching two-way ANOVA followed by
577	Bonferroni's multiple comparison test (E , J).
578	Fig. 4. The GR deletion decreases astrocytic Ca ²⁺ activity in the mPFC. (A)
579	Experimental design of fiber photometry. (B) Schematic illustrating fiber placement and
580	representative images of GCamp6s expression. Scale bars, 500 μm (left), 50 μm (right).
581	(C) Representative heatmaps of GCaMP6s transient z-scores event-locked to social
582	interaction. Each row plots one trial and a total of 4 trials are illustrated. (D-E) Average (D)
583	and peak (E) z-score changes during social interaction ($n = 4$ mice per group). Data are
584	the mean \pm s.e.m. * <i>P</i> < 0.05. Matching two-way ANOVA followed by Bonferroni's multiple
585	comparison test (E).
586	Figure 5. GRs modulate astrocytic ATP release in the mPFC. (A) The concentration of
587	plasma corticosterone in cKO and Ctrl mice under basal conditions or after an additional
588	acute social defeat episode (n = 6-8 mice per group). (B) Measurements of
589	neurotransmitter levels (aspartate (Asp), glutamate (Glu), serine (Ser), glutamine (Gln),
590	glycine (Gly), GABA, and ATP) in the medium of slices of the PFC (n = 5-8 mice). (C) In
591	vivo microdialysis in freely moving mice showing ATP levels in the mPFC (n = 8 mice per

group). (D-E) ATP levels in the medium of primary cultured astrocytes (D, n = 6) and

593	GR-knockdown astrocytes (E, $n = 6$) treated with DXMS or vehicle for 4 h. (F)
594	Experimental design of fiber photometry. (G) Schematic illustrating fiber placement and
595	representative images of AAV-GfaABC1D-ATP1.0 expression. Scale bars, 500 μm (left),
596	50 µm (right). (H) Representative heatmaps of ATP1.0 transient z-scores event-locked to
597	social interaction. Each row plots one trial and a total of 4 trials are illustrated. (I-J)
598	Average (I) and peak (J) z-score during social interaction (n = 4 mice per group). (K)
599	Experimental design of ATP treatment. (L) Total immobility time in the FST (n = $9-12$
600	mice). Data are the mean \pm s.e.m. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.01. Two-tailed unpaired
601	t-test (B), two-tailed paired t-test (C), one-way ANOVA followed by Bonferroni's multiple
602	comparison test (D, L), two-way ANOVA followed by Bonferroni's multiple comparison test
603	(A, E, J).
604	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP
604 605	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and
604 605 606	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group).
604 605 606 607	 Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG
604605606607608	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG pathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels in
 604 605 606 607 608 609 	 Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG pathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels in cultured astrocytes after 4 h of DXMS (1 μM) or vehicle treatment (n = 5). (E) ATP levels
 604 605 606 607 608 609 610 	 Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG pathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels in cultured astrocytes after 4 h of DXMS (1 µM) or vehicle treatment (n = 5). (E) ATP levels in the medium of cultured astrocytes treated with DXMS (1 µM) or vehicle for 4 h in the
 604 605 606 607 608 609 610 611 	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG pathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels in cultured astrocytes after 4 h of DXMS (1 µM) or vehicle treatment (n = 5). (E) ATP levels in the medium of cultured astrocytes treated with DXMS (1 µM) or vehicle for 4 h in the presence or absence of the PI3K inhibitor LY29004 (40 µM) (n = 5-6). (F) Effects of GPN
 604 605 606 607 608 609 610 611 612 	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATP release. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO and Ctrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group). (B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGG pathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels in cultured astrocytes after 4 h of DXMS (1 µM) or vehicle treatment (n = 5). (E) ATP levels in the medium of cultured astrocytes treated with DXMS (1 µM) or vehicle for 4 h in the presence or absence of the PI3K inhibitor LY29004 (40 µM) (n = 5-6). (F) Effects of GPN (200 µM) on the DXMS-induced release of ATP from astrocytes (n = 5-6). (G) Confocal
 604 605 606 607 608 609 610 611 612 613 	Fig. 6. The PI3K-AKT signaling pathway mediates GR-dependent astrocytic ATPrelease. (A) Volcano plot of the differentially expressed genes (DEGs) between cKO andCtrl astrocytes isolated from the mPFC (n = 3 independent biological samples per group).(B) Hierarchical clustering based on the expression profiles of DEGs. (C) Enriched KEGGpathways. (D) Western blot analysis of p-PI3K, PI3K, p-AKT, and AKT protein levels incultured astrocytes after 4 h of DXMS (1 μM) or vehicle treatment (n = 5). (E) ATP levelsin the medium of cultured astrocytes treated with DXMS (1 μM) or vehicle for 4 h in thepresence or absence of the PI3K inhibitor LY29004 (40 μM) (n = 5-6). (F) Effects of GPN(200 μM) on the DXMS-induced release of ATP from astrocytes (n = 5-6). (G) Confocalfluorescent images of Lysotracker uptake in living astrocytes treated with 740-YP (50 μg)

615	Lysotracker was quantified using ImageJ (n = 6 separate experiments). (I) Confocal
616	fluorescent images of Lamp1 in astrocytes treated with 740-YP (50 μ g ml ⁻¹) or vehicle for
617	4 h. Scale bar,10 $\mu m.$ (J) The number of lysosomes per 100 μm^2 in 19 and 18 astrocytes
618	treated with vehicle or 740-YP, respectively. (K) Distribution of the lysosome surface (μ m ²).
619	1136 and 1214 lysosomes were measured in astrocytes treated with vehicle or 740-YP,
620	respectively. The lysosomal size was ranged from 0.01 to 1 μm^2 . χ^2 test of independence:
621	χ^2 = 2.419, df 10, <i>P</i> =0.992. (L) A model for mechanisms of depression indicated that the
622	GR-dependent astrocytes mediated stress vulnerability in mice. Temporal elevations in
623	glucocorticoid levels preferentially activated astrocytic GRs, thereby enhancing
624	extracellular ATP release through lysosome exocytosis. ATP released from astrocytes
625	bound to purinergic receptors on neurons. Chronic stress induced a reduction of astrocytic
626	GRs in the mPFC, which consequently decreased ATP released from astrocytes to
627	regulate depressive-like behaviors. Data are the mean \pm s.e.m. * <i>P</i> < 0.05, ** <i>P</i> < 0.01,
628	***P< 0.001, N.S., not significant. Two-tailed unpaired t-test (D, H, J) and one-way
629	ANOVA followed by Bonferroni's multiple comparison test (E, F).

